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Based on an analysis of a generalized xy spin model, it has been suggested recently that vortices with split
cores may be realized in the cuprates. In the present work we solve the Gor’kov equations for a d-wave BCS
superconductor in the presence of an isolated vortex with a split core and thereby we determine the local
tunneling density of states in the vicinity of such a vortex. We find only marginal differences between the
densities of states in the core regions of usual and split vortices. Therefore the experimental observation of
unusual vortex core shapes cannot be interpreted as a straightforward consequence of vortex splitting.
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Scanning tunneling spectroscopy of the vortices in
Bi2Sr2CaCu2O8+� has shown1 that vortex cores may split into
several subcomponents with a spacing in the range
10–100 Å. In Refs. 1 and 2, the complex core shapes were
interpreted as a result of the vortex hopping between differ-
ent pinning sites which is sufficiently fast on the time scale
of the experiment.1,2 Recently, in Ref. 3 an alternative inter-
pretation of the tunneling experiments has been proposed,
according to which the splitting of the vortices into subcom-
ponents is of static origin.

The basic idea of Ref. 3 is quite simple. Namely, it is well
known that on length scales smaller than the penetration
depth, the superconducting condensate can be modeled by an
xy spin model. In Ref. 3 it has been suggested that a single
CuO2 plane can be described by a modified xy spin model,

Hxy = �
����

�J1 cos��� − ��� − J2 cos�2�� − 2���� , �1�

where the indices � ,� label the links of the CuO2 lattice and
�� is the phase of a Cooper pair at link �; the sum runs over
all nearest-neighbor pairs of links ����. The cases J1�0 and
J1�0 describe the d-wave and s-wave superconductors, re-
spectively. It was observed that, provided that J2�0, in the
vicinity of the critical point J1=0 the vortices spontaneously
split into two half vortices separated by a domain wall, sug-
gesting a possible connection with the experimental results.1

It is worth pointing out that at the critical point J1=0 the
half vortices are deconfined, i.e., the superconducting state
supports elementary excitations carrying flux h

4e . Such a state
might be called charge 4e superconductor. In the context of
classical spin models, charge 4e superconductivity corre-
sponds to a nematic phase. It has been shown4,5 that at finite
temperatures the nematic phase of the model Eq. �1� is sta-
bilized also for nonvanishing values of J1. Thus, if the pic-
ture advanced in Ref. 3 is valid, the cuprates might be lo-
cated close, along the J1 axis, to an exotic charge 4e
superconductor. Interestingly, several other theoretical stud-
ies of strongly correlated electron models also suggest the
possibility of charge 4e superconductivity in certain regions
of their phase diagrams.6,7

It should be pointed out, however, that the experiment
reported in Ref. 1 measures the local tunneling density of
states �DOS�, which is not directly accessible within the
bosonic theory based on Eq. �1�. In order to check the appli-

cability of Ref. 3 to the tunneling experiments more directly,
we need to construct a fermionic theory.

In this paper we study the simplest fermionic model.
Namely, we describe the CuO2 plane by the standard one-
band tight-binding �grand-canonical� Hamiltonian with BCS
pairing treated in the mean-field approximation,

H = − �
ij
�tij�

�

ci�
† cj� + 	ijci↑

† cj↓
† + 	ij

� cj↓ci↑	 , �2�

where the indices i and j label the lattice sites of the square
lattice, tij are the matrix elements for tunneling between i and
j, the field 	ij describes the pairing, and tii=
, where 
 is
the chemical potential. We assume that tij = t if i and j are
nearest-neighbor sites and tij = t�=−0.3t if i and j are next-
nearest-neighbor sites; all remaining tunneling amplitudes tij
are assumed to be vanishing. With these values of tij, the
model is known to reasonably reproduce the experimental
spectrum of the cuprates. The pairing field 	ij is assumed to
be nonvanishing only for nearest-neighbor sites i and j. We
require that the pairing field is symmetric, 	ij =	 ji, as appro-
priate for a singlet superconductor. In the presence of a vor-
tex, 	ij is necessarily not translationally invariant. In order to
minimize the number of input parameters, we neglect the
suppression of the pairing amplitude in the vicinity of the
vortex core. This can be justified by the work of Berthod,
who has shown that the core states are determined primarily
by the phase field of the order parameter.8 Therefore we con-
sider a pairing field 	ij given by the following ansatz:

	ij = 	ei�ijei�ij . �3�

In other words, we consider a pairing field with a homoge-
neous amplitude and two sources of phase modulation. The
phase field �ij describes the d-wave symmetry of the pairing
and therefore �ij =0 and �ij =� for horizontal and vertical
links, respectively. On the other hand, the phase field �ij
describes the phase modulation due to the presence of a su-
perconducting vortex.10 Note that we have neglected the
Peierls phases of tij and 	ij due to the magnetic field. This is
justified at our length scales of interest around the vortex
core, which are much smaller than the penetration depth.8

The main goal of the present work is to determine the
DOS in the core region of a split vortex. For definiteness we
take for �ij the optimal phase field determined in Ref. 3 for
the model Eq. �1� with J1 /J2=0.21 which is shown in Fig.
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1.9 For comparison, we have studied the DOS also in a con-
ventional vortex with the phase field �ij determined for J2
=0.

In what follows we determine the DOS by the same
method which was applied by Berthod to a conventional
vortex.8 Let us start by defining the retarded diagonal and
off-diagonal Green’s functions,

Gij��t� = −
i


�
ci��t�,cj�

† ����t� ,

Fij��t� = −
i


�
ci−�

† �t�,cj�
† ����t� .

Making use of the equations-of-motion method and observ-
ing that the spin index is irrelevant, we find the explicit form
of the Gor’kov equations for Gij�t� and Fij�t�,

i � Gkl�t�/�t = �kl��t� − �
j

�tkjGjl�t� + 	kjFjl�t�� ,

i � Fkl�t�/�t = �
j

�tkjFjl�t� − 	kj
� Gjl�t�� .

In order to ensure the convergence of the integrals that
follow, instead of the functions X�t�, where X=Gij ,Fij, let us
consider the functions X�t�e−�t damped by an inverse lifetime
��0. More physically, finite values of � may be thought of
as a result of the scattering processes not taken into account
in Hamiltonian �2�. Let us define the Fourier transforms as
follows:

X��� =� dtei��+i��tX�t� ,

X�t� =� d�

2�
e−i��+i��tX��� .

With these definitions the Gor’kov equations can be written
as a set of algebraic equations,

��� + i��1 + t�G��� + 	F��� = 1 ,

��� + i��1 − t�F��� + 	�G��� = 0.

Note that from now on, we do not write down the spatial
indices of the matrices t, 	, G���, and F���. Introducing the
normal-state Green’s-function matrix G0���= ���+ i��1
+ t�−1, the Gor’kov equations can be explicitly solved for the
diagonal Green’s function,

G��� = �1 − G0��������−1G0��� , �4�

���� = − 	�G0�− ����	�. �5�

Since we assume that in the normal state the problem is
translationally invariant, the normal-state Green’s function
G0��� can be determined easily by Fourier transformation.
On the other hand, in the presence of a vortex, i.e., of a
nontranslationally invariant phase field �ij, the self-energy
matrix �ij��� is not translationally invariant. Therefore G���
has to be calculated for a finite lattice containing a vortex,
first by determining ����, then by calculating the inverse of
the matrix 1−G0�������, and finally by matrix multiplica-
tion. In this work we present the results for our largest lat-
tices with 96�96 sites. In order to arrive at spectral func-
tions without unphysical spikes, the inverse lifetime � has to
be chosen at least comparable to the level spacing of our
problem. In order to be able to work with reasonably small
�, following Berthod,8 we have determined Gij

0 ��� on much
larger lattices; typically we have performed a fast Fourier
transformation on lattices with 1024�1024 sites.

Once we have determined the diagonal Green’s function
Gij��� for various � in the vicinity of the chemical potential

(b)(a)

FIG. 2. The bullets show those sites of the Cu lattice at which
we present the results for the DOS. Left panel: usual vortex with
J2=0. The vortex core is located at the black plaquette. Right panel:
split vortex with J1 /J2=0.21. The two half vortices are located at
the shaded plaquettes. In both panels, the arrows show �schemati-
cally� the circulating phase field �ij. Note �Ref. 3� that the Cu lattice
is rotated by 45° with respect to the lattice of links � shown in Fig.
1.

FIG. 1. Phase field in a split vortex with J1 /J2=0.21. Every
arrow represents the phase �� of the link �. The center of the arrow
is located in the middle of the link. Two half vortices are visible, in
each of them phase winds by �. The half vortices are connected by
a domain wall along which the phase jumps by �. The vortex
looks conventional at length scales much larger than the separation
between the half vortices.
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at �=0, we can calculate the tunneling density of states
A�i ,�� at energy � in the lattice point i using A�i ,��=
−�−1 Im Gii�� /�.

In the rest of this paper we present numerical results for
A�i ,��. All data have been obtained for t�=−0.3t, 	=0.2t,
and 
=2t. With this choice of parameters, the maximum gap
at the Fermi surface is 	max0.4t. If we take t0.3 eV, our
	max is about four times larger than the experimental value of
	max in the cuprates. We have deliberately chosen a larger
gap since our energy resolution is �=0.01t3 meV. We
have taken a larger value of 
 than required by the actual
electron count of the cuprates because for a realistic 
 com-
bined with our choice of 	, the Van Hove singularity of the
noninteracting density of states would lie within the super-

conducting gap and this does not seem to agree with experi-
ments.

We have studied the spatial pattern of A�i ,�� for two
phase fields �ij: for a usual vortex determined for the spin
model with J2=0 and for a split vortex with J1 /J2=0.21. In
Fig. 2 we show for both phase fields the paths on the square
Cu lattice along which we present our results for A�i ,��.

In Fig. 3 we present the results for the DOS in a conven-
tional vortex. The vortex center coincides with the center of
an elementary plaquette of the CuO2 plane. Therefore there
are four core sites; low-energy bound states have a large
weight at these core sites. As one moves away from the
vortex center, bound states appear at higher energy and far
away from the vortex the density of states approaches its
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FIG. 3. DOS in a usual vortex. The left and right panels show the data along the paths A and B in Fig. 2, respectively. In both panels,
the topmost curves correspond to the core site and the lowest curves correspond to remote sites; the DOS at the latter sites is essentially equal
to the bulk value. Except for the lowest curves, the data have been shifted vertically for clarity.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

D
O

S
(a

rb
.u

ni
ts

)

ε / t

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

D
O

S
(a

rb
.u

ni
ts

)

ε / t

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

D
O

S
(a

rb
.u

ni
ts

)

ε / t

(b)(a)

(c)

FIG. 4. DOS in a split vortex with J1 /J2=0.21. The upper left, upper right, and bottom panels show the data along the paths C, D, and
E in Fig. 2, respectively. In all panels, the topmost curves correspond to sites at the domain wall and the lowest curves correspond to remote
sites. The thick line in the upper left panel corresponds to the half-vortex site �the only open bullet along path C�. Except for the lowest
curves, the data have been shifted vertically for clarity.
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bulk value. These results are consistent with previous stud-
ies, see Ref. 8, and references therein.

In Fig. 4 we show the spatial evolution of the DOS in the
core region of a split vortex. The qualitative similarity to the
results for the usual vortex presented in Fig. 3 is evident; at
the midpoint between the half vortices, which plays the role
of the center of a usual vortex, there is a large peak at the
chemical potential. With increasing distance from the mid-
point, the zero-bias peak splits into two peaks, which finally
merge with the bulk coherence peaks. The only qualitative
difference between Fig. 4 and the results for the usual vortex
is the presence of an asymmetry between the two diagonal
directions in Fig. 4 whereas the spectra are the same along
both diagonals in the usual vortex. This is because in a split
vortex, the core states are preferentially located along the
domain wall joining the half vortices. One can observe from
Fig. 4 that, surprisingly, the most singular density of states is
realized at the midpoint site between the half vortices and
not at the half-vortex sites, as originally expected in Ref. 3.
The expectations of Ref. 3 were based on the fact that the
largest currents and magnetic fields were found in the vicin-
ity of the half-vortex sites, i.e., at the end points of the do-
main wall. The singular behavior at the midpoint site has to
do with the phase jump by � along the domain wall joining
the half vortices, see Fig. 1. In order to prove this, we have

calculated the DOS in the vicinity of a diagonal grain bound-
ary, with an overall phase shift of � between the two grains.
The DOS for this system is plotted in Fig. 5. Bound states at
zero energy are seen to form at the boundary, in agreement
with earlier studies.11–13 This confirms that it is the � shift
which is at the origin of the zero-energy states in the vicinity
of the midpoint site. Consistent with this interpretation is
also the comparison of Figs. 3 and 4 which shows that the
zero-bias peak is broader in the usual vortex than in the split
vortex, although both data sets were calculated with the same
parameters, except for the phase field �ij.

Before concluding, it is worth pointing out that the experi-
mental DOS in unsplit vortices looks very different from the
d-wave prediction, Fig. 3. Surprisingly, the DOS in the core
region resembles that found in the pseudogap state; the co-
herence peaks at �	max are suppressed and there are only
weak features due to in-gap states at finite energy. This has
been attributed, e.g., to an in-core admixture of a different
pairing component to the pure d-wave superconducting state,
to an unconventional normal state in the vortex core, or to
phase fluctuations, see Ref. 2 for a review. It seems fair to
say, however, that consensus has not been reached yet on this
issue.

As regards the experiments on split vortices, they have
found spatially separated islands in which the coherence
peaks were suppressed.1 These corelike islands were im-
mersed in the sea with a bulklike DOS. While our BCS-like
approach cannot explain the absence of the zero-bias peaks
in the core, it might have the potential to find regions with
the most singular DOS inside the vortex; we did hope that
these regions would turn out to be spatially separated for a
split vortex. The present work shows that this is not the case.

So should the idea of static vortex splitting be abandoned?
In absence of an accepted theory of the cuprate core states
we cannot tell for sure. The reason is that a more sophisti-
cated microscopic theory of an unsplit vortex, which has to
go beyond the model Eq. �2�, may be also consistent with the
hypothesis about static splitting of the vortices.
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FIG. 5. DOS in the vicinity of a diagonal grain boundary with a
phase shift of � between the grains. The various curves display the
density of states at increasing distance from the grain boundary. The
topmost �lowest� curve corresponds to the grain-boundary �remote�
site. Except for the lowest curve, the data have been shifted verti-
cally for clarity.
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